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10.

MATH 245 S18, Exam 3 Solutions

Carefully define the following terms: N, U, (absolute) complement, Cartesian product.

Given sets S, T, SNT ={x:xz € SAxz € T}. Given sets S,T, SUT ={x: 2 € SV € T} Given sets
S,U with S C U, we define the absolute complement of S as U \ S. Given sets S, T, we define the Cartesian
product of S, T as {(x,y) :x € S,y € T}.

Carefully define the following terms: relation, symmetric (relation), antisymmetric (relation), trichotomous
(relation).

Given sets S, T, a relation from S to T is a subset of S x T. A relation R on S is symmetric if for all z,y € 5,
xRy — yRxz. A relation R on S is antisymmetric if for all x,y € S, (ztRy A yRx) — x = y. A relation R on
S is trichotomous if for all x,y € S, x =y V 2Ry V yRz.

Let S = {a,b}. Give a two-element subset of 2°*%. Be careful with notation.

Note that S x S = {(a,a), (a,b), (b,a), (b,b)}. Elements of 25%° are subsets of S x S. We seek a set, which
contains two elements. Each of those elements must be a subset of S x S, namely a set of ordered pairs.
Many solutions are possible, such as {{(a,a)}, {(b,0)}} or {0, S x S} or {{(a,a), (a,b)},{(a,a),(b,a)}}.

Let S be a set. Prove that SUD = S.

This must be proved in two parts. First we prove C: Let x € SU(). Then z € SV z € (). We have two cases:
xz € Sorx e (). The second case can’t happen, so x € S. This proves SU® C S. Next, we prove D. Let
x € S. By addition, z € SV z € (). Hence x € SU. This proves SU) D S.

Give a partition of Z with three parts.

Many solutions are possible; all of them consist of a set of three parts such as {Py, P, P}. One solu-
tion is Py = {0},P, = N,P, = {& € Z : © < 0}. Another solution is to apply the Division Algorithm
with 3. P; will be the set of integers with remainder ¢ (which must be 0, 1, or 2). Another solution is
Py =A{0}, Py = {1}, P, = Z\ {0, 1}.

For problems 6 and 7, take ground set S = {—1,0, 1} with relation R = {(a,b) : a < b?}.

With R, S as above, prove or disprove that R is reflexive.

The statement is true. Because —1 < (—1)%, (=1,—1) € R. Because 0 < 02, (0,0) € R. Because 1 < 12,
(1,1) € R. These three together imply that R is reflexive.

With R, S as above, prove or disprove that R is transitive.

The statement is false. We need a specific counterexample. There is only one (it can be found by drawing
the relation’s digraph). Because 1 < (—1)2, (1, —1) € R. Because —1 < 02, (—=1,0) € R. However, (1,0) ¢ R,
because 1 £ 02. Hence R is not transitive.

Prove or disprove: For all sets R, S, we have R\ S = RAS.

The statement is false. We need a specific counterexample. Many are possible. A simple oneis R = {1,3},5 =
{2,3}. We have R\ S = {1}, while RAS = (R\ S)U (S\ R) = {1,2}.

Prove or disprove: For all sets R, S,T satisfying R C S, S CT, and T C R, we must have R = S.

The statement is true. To prove R = S, we need to prove R C S (one of our hypotheses already), and S C R.
Let z € S. Since SCT,z€T. SinceT C R, x € R. Hence S C R.

Prove or disprove: |N| = |Ny x Np].

The statement is true.

PROOF 1: As in Thm 9.17 and Exercise 9.24, for any n € N we can uniquely write n = 2%(2b + 1), and pair
n < (a,b).

PROOF 2: We write all the ordered pairs in Ny x Ny in the first quadrant at their locations, and take a
zig-zag path starting at the origin and passing through all the pairs. We pair the n'" position along the path
with the ordered pair at that position.

PROOF 3: We pair N with a subset of Ny x Ny, for example via n «> (n,0). This proves that |N| < |Ny x Np].
We next pair Ny x Ny with a subset of N, for example via (a,b) <+ 2¢3". This proves that |N| > [Ny x Np.
Lastly, we apply the Cantor-Schréder-Bernstein Theorem.



